Face Recognition - Combine Generic and Specific Solutions
نویسندگان
چکیده
In many realistic face recognition applications, such as surveillance photo identification, the subjects of interest usually have only a limited number of image samples a-priori. This makes the recognition a difficult task, especially when only one image sample is available for each subject. In such a case, the performance of many well known face recognition algorithms will deteriorate rapidly and some of the algorithms even fail to apply. In this paper, we introduced a novel scheme to solve the one training sample problem by combining a specific solution learned from the samples of interested subjects and a generic solution learned from the samples of many other subjects. A multi-learner framework is firstly applied to generate and combine a set of generic base learners followed by a second combination with the specific learner. Extensive experiments based on the FERET database suggests that in the scenario considered here, the proposed solution significantly boosts the recognition performance.
منابع مشابه
Face Recognition Based on Manifold Learning and SVM Classification of 2D and 3D Geodesic Curves
This chapter has a twofold objective. On the one hand, an original approach based on the computation of radial geodesic distances (RGD) is proposed to represent two-dimensional (2D) face images and three-dimensional (3D) face models for the purpose of face recognition. In 3D, the RGD of a generic point of a 3D face surface is computed as the length of the particular geodesic that connects the p...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملHeterogeneous Face Recognition
Heterogeneous Face Recognition By Brendan F. Klare One of the most difficult challenges in automated face recognition is computing facial similarities between face images acquired in alternate modalities. Called heterogeneous face recognition (HFR), successful solutions to this recognition paradigm would allow the vast collection of face photographs (acquired from driver’s licenses, passports, ...
متن کاملExemplar based approaches on Face Fiducial Detection and Frontalization
Computer vision solutions such as face detection and recognition, facial reenactment, facial expression analysis and gender detection have seen fruitful applications in various domains such as security, surveillance, social media and animation. Many of the above solutions have common pre-processing steps such as fiducial detection, appearance modeling, face structural modelings etc. These steps...
متن کاملA Review of Intrusion Detection Defense Solutions Based on Software Defined Network
Most networks without fixed infrastructure are based on cloud computing face various challenges. In recent years, different methods have been used to distribute software defined network to address these challenges. This technology, while having many capabilities, faces some vulnerabilities in the face of some common threats and destructive factors such as distributed Denial of Service. A review...
متن کامل